Providing means for a better understanding of biodiversity: improving primary data and using it for threat assessment and in situ conservation planning in South America #### Progress report No. 1 Submitted by the Decision and Policy Analysis (DAPA) program International Centre for Tropical Agriculture (CIAT), Cali, Colombia Andy Jarvis, Julián Ramírez, Louis Reymondin, Daniel Amariles, Hector Tobón, Jorge Camacho and Jhon Jairo Tello # **Summary** The Inter-American Biodiversity Information Network (IABIN) has the mandate of providing a networking information infrastructure as well as primary biodiversity data on a number of topics in order to improve decision-making, particularly for issues at the interface of human development and biodiversity conservation. Attempts to correct geographic errors in IABIN Thematic Networks (TNs) were done and software packages based on the Java programming language were developed and tested. Documentation was also provided so that partners are able to use the tools we provide. Using these automated tools, we found that 14% (~500,000 records) of the Species and Specimens Thematic Network (SSTN) has either not reliable coordinates or have no coordinates at all; whereas for the I3N database (for which we could only assess 14.3% of the data owing to difficulties in the interpretation of coordinates), we found that 30.3% have unreliable coordinates. All these data can be potentially georeferenced, though particular attention needs to be paid to the location data needed to retrieve coordinates. The Pollinators Thematic Network (PTN) database has not been yet assessed as it has not been delivered by TN partners. We were able to properly implement the georeferencing algorithm and apply it over various sets of test data. Our results indicate that in the vast majority of cases a reliable geographic reference can be retrieved from the biogeomancer service. In addition, we set up several trials to test the algorithm on its accuracy, but were not able to perform them yet given the fact that the service has been down during the last 2-3 weks. Particular attention needs to be paid to the processing time given the condition of the biogeomancer service as an online platform and optimisation pathways are currently under investigation. #### **Contents** - 1. Introduction - 2. Developed scripts and documentation for data cleansing - 2.1. Data-filtering and error cross-checking - 2.2. Coordinate correction (georeferencing) - 3. Data - 3.1. Species and Specimens Thematic Network (SSTN) - 3.2. Invasive Species Thematic Network (I3N) - 3.3. Pollinators Thematic Network (PTN) - 4. Results - 4.1. Data-filtering and error cross-checking - 4.1.1. Species and Specimens Thematic Network (SSTN) - 4.1.2. Invasive Species Thematic Network (I3N) - 4.1.3. Pollinators Thematic Network (PTN) - 4.1.4. Summary - 4.2. Coordinate correction (georeferencing) - 4.2.1. Processing time, main issues and solutions - 4.2.2. Proof of concept: reliability of the algorithm - 4.2.2.1. Are we able to correctly locate a record? - 4.2.2.2. Are we able to correct mask-type errors? - 4.2.2.3. Are we able to correct country-type errors? - 4.2.3. Summary - 5. Conclusions - 6. Brief summary on next steps # 1. Introduction The Inter-American Biodiversity Information Network (IABIN) has the mandate of providing a networking information infrastructure as well as primary biodiversity data on a number of topics in order to improve decision-making, particularly for issues at the interface of human development and biodiversity conservation. IABIN currently provides access to scientific information existent throughout the world in different institutions. Currently, under a grant from the Global Environment Facility (GEF), IABIN is improving all the quality, the impact and the access of its data. Currently, IABIN holds five thematic networks (TNs, hereafter), from which three provide point-based primary biodiversity data (occurrences). These thematic networks, namely: - The Species and Specimens Thematic Network (SSTN); - 2. The Invasive Species Thematic Network (I3N); and - 3. The Pollinators Thematic Network (PTN) Hold a considerable amount of data. However, the three different thematic networks have different data structures, different standards, as well as different providers. In addition, the data has not been checked or verified in either quality or reliability, and more important, no attempt to correct the possible errors, homogenise the databases, or use them to in fact inform or guide decision-making processes has been done. The International Centre for Tropical Agriculture (CIAT) has been funded within the GEF grant to "Improve primary data and use it for threat assessment and in situ conservation planning in South America", which means, in a first instance, that the quality of the data within the different thematic networks will be assessed using a scientifically rigorous and mostly automated approach. Attempts to correct errors are also to be developed, and finally, the data will be used as input to a variety of modelling approaches intended to improve the knowledge on the vulnerability and conservation of biodiversity in South America. In a greater detail, as a whole the project will deliver: - 1. Automatic cross-checking scripts - 2. Automatic georeferencing scripts - 3. Results on both the cross-checking and georeferencing of the TNs with suitable databases for such purposes (SSTN, I3N and PTN) - 4. Automatic species distribution models training scripts - 5. An assessment of level of both anthropogenic threats and conservation status for a number of species (for which geographic distributions can be modelled) - 6. A Google-maps based navigation tool for all the modelling results (from [5]) In this report we provide a progress on deliverables (1), (2) and (3), and provide a detailed workplan for the next deliverables. ## 2. Developed scripts and documentation for data cleansing One of the most relevant issues regarding the analyses and latter conclusions derived from the usage of primary biodiversity data is the reliance on its quality. Poor quality biodiversity data could lead to incorrect and biased conclusions as well as cause inefficient and/or wrong investment of the available resources and inadequate policy development. Checking of biodiversity data quality as well as using it adequately is a key issue in order to aid decision-making processes We have built automated algorithms (Figure 1) developed in the Java programming language that allow a thorough coordinate verification process (error detection) and georeferencing process (error correction). Through this process we intend to develop an automated platform for IABIN's TNs to assess their own data whenever more data is incorporated on any of their databases. Figure 1 Assessment and improvement of IABIN TNs databases using automated algorithms Adequate documentation on how to build, configure and run the tools is also provided in order to better manage knowledge transfer between and within TNs, and between TNs and project developers. A *googlecode* project has been therefore created with this aim (http://code.google.com/p/iabin-threats/), where all the source code and documentation is stored, and where bugs and problems can be raised as issues and discussed with developers. ## 2.1. Data-filtering and error cross-checking #### Description Common biodiversity data sources are observations from researchers, herbarium vouchers and genebank accessions, although there are also some additional observations such as archaeological findings and zoo living specimens. When these observations are done, detailed information is often recorded on the collection site, the type of observation (taxonomic identification), the surrounding habitat, and even the climatic conditions at the particular place of collection. With the development of Geographic Information Systems (GIS), satellites and Geographic Positioning Systems (GPS), currently, even the precise numeric location (i.e. coordinates) of the collection site can be retrieved. All this information is stored in primary biodiversity databases. However, due to the differences in data formats, institutional organization of the data, and due to common human errors in spelling of species names, mistyping information, big databases with primary biodiversity data often also have big errors. These errors turn very relevant when researchers intend to use the data for any scientific purpose. Here we are concerned about the geographic errors. Common errors in primary biodiversity databases are (1) misspellings of country, state, county and locality names, (2) swapping of latitude or longitude, (3) assignation of the value zero when missing data is found, (4) coordinates in different systems or unknown systems, (5) wrong usage of decimal places or truncation of all decimals, (6) usage of different coordinate formats (e.g. degrees-minutes-seconds vs. decimal degrees) without proper documenting, among others. In view of that we have developed and implemented automated Java software that runs in batch mode and assesses primary biodiversity data from large databases automatically, and provides statistics on the quality of the data. Our software verifies geographic references (coordinates) at three different levels (Figure 2): - a. Continental level - b. Country level - c. Environmental level Figure 2 Coordinate verification process To verify at the continental level, we use a high resolution land areas mask from the SRTM Digital Elevation Model coastlines (Jarvis *et al.*, 2008); to verify at the country level, we use the data from the Global Administrative Areas (Hijmans, 2010); and to verify at the environmental level, we use the Tukey outlier test (Tukey, 1977) in a twenty-dimensional space given by 19 bioclimatic indices (Ramirez & Bueno-Cabrera, 2009) derived from the WorldClim dataset (Hijmans *et al.*, 2005) and the elevation (Jarvis *et al.*, 2008). We flag a record as reliable only if it: - a. Is located in the country where it is reported to have been collected and/or observed - b. Being a record from a terrestrial species, falls within land areas, and - c. Is not flagged as an outlier for a given species in less than 80% of the 20 environmental variables used to describe the environment # Code and software provided The software was coded in the Java programming language, and the source code is provided at http://code.google.com/p/iabin-threats/source/browse/#svn/trunk/data-filtering. A final working http://code.google.com/p/iabinversion to be compiled provided threats/downloads/detail?name=ita-0.1Beta-SNAPSHOT-src.zip&can=2&q= and http://code.google.com/p/iabin-threats/source/browse/#svn/tags/ita%20v0.2 RC1 beta, an API http://code.google.com/p/iabincompiled version is provided at threats/downloads/detail?name=ita-0.1Beta-SNAPSHOT-api.zip&can=2&q=, and a jar version is http://code.google.com/p/iabin-threats/downloads/detail?name=ita-0.1provided SNAPSHOT.jar&can=2&q= #### Usage documentation All the needed documentation in order to build the project is available as "wiki" pages, and are indicated as follows: - a. How to build the software (http://code.google.com/p/iabin-threats/wiki/HowToBuildITA): Contains all the information required to build the code from the source code (required libraries, configuration of the database, checking out of the source code, etc) - b. How to configure the software (http://code.google.com/p/iabin-threats/wiki/Configuration): Contains all the information regarding how to set up the database for data extraction, how to harvest the environmental and geographic data required, and how to configure the computer that will be used for running the software. - c. How to run the software (http://code.google.com/p/iabin-threats/wiki/RunningProcedure): Contains all the information required in order to perform the analysis of a particular database. If any bugs are found, they can be issued through the **googlecode** project via http://code.google.com/p/iabin-threats/issues/list, by just clicking on the link "New issue" and then filling all the information requested. # 2.2. Coordinate correction (georeferencing) # **Description** Even when a coordinate verification process is implemented, it does not directly imply that the best-bet is being done from the available data. A quality improvement process is still required in order to be able to use the best-shaped data in further analyses. Geographically speaking, this means the retrieval of coordinates when they are either unavailable or erroneous. Using biogeomancer (Guralnick & Hill, 2009, Guralnick *et al.*, 2006, Hill *et al.*, 2009), one can retrieve the coordinates of a particular location by means of the collecting place information provided in the database (e.g. country, state, county, and locality name). Though the location information is not available in all the cases when also the coordinates are lacking, it is available in a number of cases and can be retrieved with a considerable degree of confidence (Hill *et al.*, 2009) In this particular case, we have developed software that uses all the records flagged as not reliable (from the automatic data filtering and cross-checking), is capable of (1) identifying the records that have enough location information to retrieve a coordinate, (2) querying the biogeomancer service at http://bg.berkeley.edu/latest/, (3) interpreting the result from the biogeomancer service, and (4) adding the retrieved coordinate to the database. #### Code and software provided As the data filtering and cross-checking software, we have developed the georeferencing project in the Java language. The complete **source code** is at http://code.google.com/p/iabin-threats/source/browse/#svn/trunk/Biogeomancer, while the final working version is at http://code.google.com/p/iabin-threats/source/browse/#svn/tags/ita-bg%20v0.1 RC1 alpha, and a final compiled version ready-to-use as a ".jar" file is provided at 10 km), and that in 13% of the times the coordinate was not found. In all the other cases, however, uncertainties remain below the 10km limit, which is a decent limit that allows performing further geographical or modelling approaches with the data. Figure 15 Uncertainties in the georeferencing process # 4.2.2.1. Are we able to correctly locate a record? In order to test the validity of the georeferences provided by the service, we conducted a simple test. We first selected a group of data (1) flagged as geographically reliable, (2) evenly geographically distributed (50 points distributed along different countries), (3) with coordinates, and (4) with enough location data in order to retrieve georeferences from biogeomancer (country, state, county and locality names). We queried the biogeomancer service with the locality information and gathered the coordinates to then compare the results between the original and retrieved coordinates. Figure 16 Original locations of the data to be used in the accuracy test ## 4.2.2.2. Are we able to correct mask-type errors? We tested the ability of the service to correct records that we flagged as errors during our coordinate cross-checking processes. To this purpose, we selected records that were previously flagged as not reliable because they were found to be located outside land areas (i.e. mask-type errors) that (1) had enough location information for retrieving coordinates and (2) were evenly distributed among the countries. We corrected the geographic references and drew maps of "before" and "after" the georeferencing process. Figure 17 Original locations of the data to be used in the mask-type error correction test # 4.2.2.3. Are we able to correct country-type errors? We tested the ability of the service to correct records that we flagged as errors during our coordinate cross-checking processes. To this purpose, we selected records that were previously flagged as not reliable because they were found to be located in the wrong country (i.e. country-type error) that (1) had enough location information for retrieving coordinates and (2) were evenly distributed among the countries. We corrected the geographic references and drew maps of "before" and "after" the georeferencing process. Figure 18 Original locations of the data to be used in the country-type error correction test #### 4.2.3. Summary We were able to properly implement the georeferencing algorithm and apply it over various sets of test data. Our results indicate that in the vast majority of cases a reliable geographic reference can be retrieved from the biogeomancer service, though attention must be paid in those cases where more than one georeference is obtained from the online platform. In addition, we set up several trials to test the algorithm for consistency, though we were not able to perform them due to unavailability of the service during the last 2-3 weeks. Particular attention needs to be paid to the processing time given the condition of the biogeomancer service as an online platform. #### 5. Conclusions Several issues arose from the gathering of the primary biodiversity data from IABIN TNs. First of all, we were not able to gather all the data from all TNs: PTN data is still on its way. On the other hand, I3N data was in a completely different format as compared to SSTN data (which fairly easy to assess), and even more important than that, proper documentation was not available for the I3N database, plus the latitude and longitude fields contained information that was fairly complicated to interpret and use. Although, we made several attempts to interpret and use these data and found that in general the data had less quality in comparison with SSTN data. We also tested and implemented an automated geographic referencing approach and were successfully able to apply it over reduced datasets in order to test its reliability and ability to retrieve correct geographic references. There are still a number of issues accounted to the processing times required, and to the amount of data that can be sent at a single time as a query to the server, but several improvements and optimisations are being implemented to cope with these problems. # 6. Brief summary on next steps Additional tasks have arisen from the interactions with the Conservation Biology Institute (CBI). In addition to the current appointed deliverables, which include delivering the filtered and georeferenced databases to CBI, we have committed to merge these databases with the filtered data from GBIF corresponding to the Americas. This is planned to be delivered before the end of the year. Significant improvement is suggested to the I3N database so that a better interpretation of the coordinates can be done. Up to now, only a limited percentage of the data could be assessed, and even these data need to be reviewed for inconsistencies in our interpretation (which sometimes remain as a bare guess). Some additional interpretation algorithms can be investigated and implemented; however, this might require additional time. For the time being, we provide a working code and ready to use tools as well as installation, configuration and execution manuals. We suggest TN partners to start reading the manuals and provide us with the necessary feedback for us to improve both the tools and the documentation. As an additional note, we are now applying the whole modelling procedure over IABIN terrestrial records, whilst at the same time performing several tests in order to set up the web interface required for the visualisation of modelling results. We plan to have all the modelling work finished by the end of January, whilst the first version (beta) of the web interface will be ready over the first week of March. Follow up on these activities will be done accordingly. #### References - Guralnick R, Hill A (2009) Biodiversity informatics: automated approaches for documenting global biodiversity patterns and processes. *Bioinformatics*, **25**, 421-428. - Guralnick RP, Wieczorek J, Beaman R, Hijmans RJ, The Biogeomancer Working G (2006) BioGeomancer: Automated Georeferencing to Map the World's Biodiversity Data. *PLoS Biol,*4, e381. - Hijmans RJ (2010) Global Administrative Areas (GADM). (ed Zoology MOV) pp Page, Berkeley. - Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, **25**, 1965-1978. - Hill A, Guralnick R, Flemons P *et al.* (2009) Location, location, location: utilizing pipelines and services to more effectively georeference the world's biodiversity data. *BMC Bioinformatics*, **10**, 1-9. - Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. (ed (Ciat) ICFTA) pp Page, International Center for Tropical Agriculture (CIAT). - Ramirez J, Bueno-Cabrera A (2009) Working with climate data and niche modeling I. Creation of bioclimatic variables. pp Page, Cali, Colombia, International Center for Tropical Agriculture (CIAT). - Tukey JW (1977) Exploratory Data Analysis, Addison-Wesley.