11TH ANNUAL CWWA CONFERNECE in conjunction with the

1ST CARIBBEAN ENVIRONMENTAL FORUM AND EXHIBITION

Sandals Grande St Lucian Resort Pigeon Island Causeway, St Lucia 7-11 October 2002

AN ASSESSMENT OF THE IMPACT OF CLIMATE CHANGE ON THE WATER SECTOR IN THE CARIBBEAN

Marcia M. Creary, James (Jim) P. Bruce, Rawleston Moore

Potential Climate Change Impact

CPACC

- Establishment of a sea level and climate monitoring system
- Improved access and availability of data
- Increased appreciation of climate change issues at the policymaking level

- Meeting country needs for expanded vulnerability assessment
- Establishment of coral reef monitoring protocols
- Created a network for regional harmonization

MACC

- Mainstreaming adaptation to climate change in national development planning and public and private investment decisions.
- Assisting Institutional and Technical Support mechanisms:
- Expand GCC monitoring and impact assessment as a basis for national and regional level decision making on adaptation. The following activities will be supported:
- Cross-regional Dissemination and Replication

CPACC 1998-2001

ACCC 2002 - 2004

MACC 2003-2007

ACCC

- Formulation of implementation strategies for adaptation in the water
- Sustainable regional climate change centre
- Regional and local climate change projections
- Risk Management approach to climate change issues

Projected change in global temperature

Source : Temperatures 1856 - 1999: Climatic Research Unit, University at East Anglia, Norwich UK. Projections: IPCC report 95.

Global Climate Change

• Projections for the future

Caribbean Climate Change Present Status

- Mean temperature increases of about 1°C
- Max and Min Temperatures ~ 5% increase
- Reduction of annual rainfall
- Increase in frequency of high intensity rains,
- Max number of Consecutive Dry Days declined by 6 days
- Sea level increases of up to 20 cm

Caribbean Climate Change Temperature increase by season

	Temp increase Scenario 1 (low)	Temp increase (oC) Scenario 2 (high)	
Dec – Feb			
2050	1.4	2.0	
2080	2.0	3.3	
June – August			
2050	1.5	1.0	
2080	2.0	3.3	

Caribbean Climate Change					
Precipitation changes by season					
	Ppt change %	Ppt change %			
	Scenario 1 (low)	(oC) Scenario 2			
		(mgn)			
Dec – Feb					
2050	-1.5	+13.1			
2080	-4.4	+24.4			
June – August					
2050	-18.4	+17.1			
2080	-25.3	+8.9			

Caribbean Climate Change Mean Seal Level Rise

	Scenario 1 (low)	Scenario 2 (high)	
2050	0.08m	0.88m	
2080	0.13m	0.70m	
Eventual	0.5m	2.0m	

Tropical Storms and Hurricanes

	Scenario 1 (low)	Scenario 2 (high)
# tropical storms per year	7-10	7-10
# severe hurricanes per year	2	4
Increased wind speed of strongest hurricane	5%	10-15%

Potential impacts on the water sector

- Climate change factors impacting on the water sector:
 - ✓ Drought, decrease in precipitation
 - Increase frequency and intensity of rainfall events
 - Increased frequency and intensity of hurricanes and tropical storms
 - ✓ Sea Level Rise

Drought

Intensification of water scarcity
 Reduced base flow
 Increased evapotranspiration rates
 Decrease in hydroelectric potential
 Shift in biodiversity

Implications of drought

✓ Impact on other sectors (tourism, agriculture) Reduced crop production ✓ Impacts on livestock ✓ Increased demand for cooling water Loss of hydro electric power potential ✓ Increase energy demand ✓ Impact on the forest and terrestrial resources ✓ Impact on endemic fauna and flora

Increase frequency and intensity of rainfall events

Sedimentation, coastal erosion
 Siltation of watercourses are
 Damage to croplands
 Disruption of the economic activities,

Increased frequency and intensity of Hurricanes and tropical storms

- ✓ Storm activity impacts would affect the entire economy and foreign exchange earning potential.
- ✓ Will negatively impact the arrival of tourist
- ✓ Damage to coastal infrastructure,
- ✓ damage agricultural production
- ✓ Flooding of sewerage systems
- ✓ Alteration in forest cover
- ✓ Alteration of habitat for flora and fauna
- Potential loss of rain forest, biodiversity and endemic species

Sea level rise

 Increased evaporation from elevated water table

- inundation of fresh water resources by storm surges
- ✓ increase contamination of near surface lenses

✓ Saline intrusion in underground aquifers

✓ Salinization of agricultural soil

Generic Adaptation Options

Stage I: Planning (short term)

- General Capacity
 Building: Impact
 Studies; Identification
 of Vulnerable Areas
- Identification and General Assessments of Policy Options

- Regional climate change predictions
- Predictions of water demand
- Supply management options
- Demand-side management

Generic Adaptation Options

- Stage II: Preparation (medium term)
- Further Capacity Building in Vulnerable Regions; Development of Appropriate Adaptation Plans
- Create institutions and train staff
- R&D in desalination and recycling schemes
- Public Education and information

Generic Adaptation Options

✓ Pilot studies for Stage III: Initiation • supply measures term) (long of ✓ Pilot studies for Formulation demand measures Measures to Facilitate Adaptation in ✓ Efficient water Vulnerable Areas; management Feasibility Studies; Insurance

Challenges faced

 primary scientific and monitoring data.
 inadequacy of global climate models
 expanding the number of monitoring sites
 capacity building in vulnerability assessment and adaptation planning.

comprehensive public awareness programme

Further Work

Component 6 of ACCC project
Identify downscaled future climate scenarios
Develop template for testing by a pilot water agency in the region,
Caribbean Region report to the Kyoto, 2003. International consultation
Dissemination to water managers in the region.

Further Work

Acknowledgements

- CWWA/CEHI
- ACCC/RPIU
- Co-authors